Capacitive proximity switch with auto-calibration, large
voltage operating range and very low power consumptionRev. 01 — 16 October 2009Product data s

Product data sheet

General description 1.

The integrated circuit PCF8883 is a capacitive proximity switch that uses a patented (EDISEN) digital method to detect a change in capacitance on a remote sensing plate. Changes in the static capacitance (as opposed to dynamic capacitance changes) are automatically compensated using continuous auto-calibration. Remote sensing plates (e.g. conductive foil) can be connected directly to the IC¹ or remotely using a coaxial cable.

2. **Features**

- Dynamic proximity switch
- Digital processing method
- Adjustable sensitivity, can be made very high
- Adjustable response time
- Wide input capacitance range (10 pF to 60 pF)
- Automatic calibration
- A large distance (several meters) between the sensing plate and the IC is possible
- Open-drain output (P-type MOSFET, external load between pin and ground)
- Designed for battery powered applications ($I_{DD} = 3 \mu A$, typical)
- Output configurable as push-button, toggle, or pulse
- Wide voltage operating range (V_{DD} = 3 V to 9 V)
- Large temperature operating range ($T_{amb} = -40 \text{ °C to } +85 \text{ °C}$)
- Internal voltage regulator
- Available in SOIC8 (other packages available on request for larger quantities)

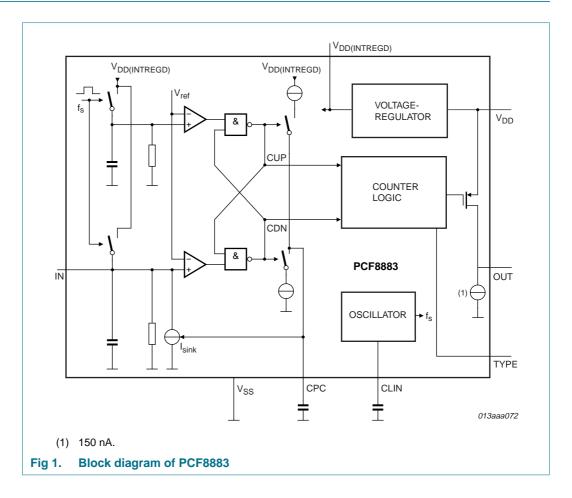
The definition of the abbreviations and acronyms used in this data sheet can be found in Section 16. 1.

3. Applications

- Proximity detection
- Proximity sensing in
 - Mobile phones
 - Portable entertainment units
- Switch for medical applications
- Switch for use in explosive environments
- Vandal proof switches
- Transportation: Switches in or under upholstery, leather, handles, mats, and glass
- Buildings: switch in or under carpets, glass, or tiles
- Sanitary applications: use of standard metal sanitary parts (e.g. tap) as switch
- Hermetically sealed keys on a keyboard

4. Ordering information

Table 1.Ordering information


Type number	Package	Package				
	Name	Description	Version			
PCF8883T	SOIC8	plastic small outline package; 8 leads; body width 3.9 mm	PCF8883			

5. Marking

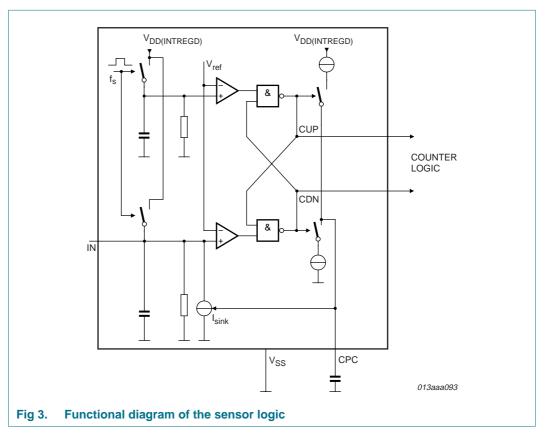
Table 2.	Marking codes	
Type num	ber	Marking code
PCF88831	•	PCF8883

Capacitive proximity switch with auto-calibration

6. Block diagram

7. Pinning information

7.1 Pinning

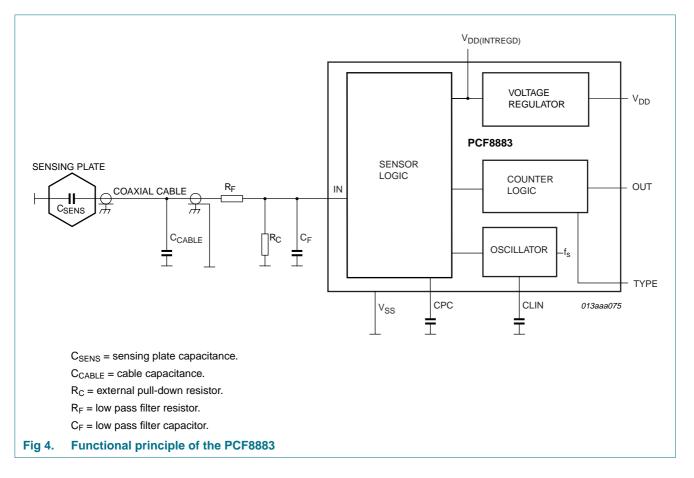


7.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
IN	1	sensor input
TYPE	2	pin OUT behavior configuration input
CPC	3	sensitivity setting
V _{SS}	4	ground supply voltage
V_{DD}	5	supply voltage
OUT	6	switch output
CLIN	7	sampling rate setting
V _{DD(INTREG}	GD) 8	internal regulated supply voltage output

8. Functional description

Figure 3 and Figure 4 show the functional principle of the PCF8883. The discharge time (t_{dch}) of a chip-internal RC timing circuit, to which the external sensing plate is connected via pin IN, is compared to the discharge time $(t_{dch}(ref))$ of a second chip-internal reference RC timing circuit. Both RC timing circuits are periodically charged from $V_{DD(INTREGD)}$ via identical switches and then discharged via a resistor to ground (V_{SS}) . Both switches are synchronized.


The charge-discharge cycle is governed by the sampling rate (f_s). If the voltage of one of the RC timing circuits falls below the internal reference voltage V_{ref}, the respective comparator output will become LOW. The logic following the comparators determines which comparator switches first. If the upper (reference) comparator switches then a pulse is given on CUP. If the lower (input) comparator switches first then a pulse is given on CDN (see Figure 3).

The pulses control the charge on the external capacitor C_{CPC} on pin CPC. Every time a pulse is given on CUP, capacitor C_{CPC} is charged from $V_{DD(INTREGD)}$ for a fixed time causing the voltage on C_{CPC} to rise. Likewise when a pulse occurs on CDN, capacitor C_{CPC} is connected to a current sink to ground for a fixed time causing the voltage on C_{CPC} to fall.

If the capacitance on pin IN increases, the discharge time t_{dch} increases too. Therefore it will take longer for the voltage on the corresponding comparator to drop below V_{ref} . Only once this happens, the comparator output will become LOW and this results in a pulse on CDN discharging the external capacitor C_{CPC} slightly. Thus most pulses will now be given by CUP. Without further action, capacitor C_{CPC} would then fully charge.

However, a chip-internal automatic calibration mechanism that is based on a voltage controlled sink current (I_{sink}) connected to pin IN attempts to equalize the discharge time t_{dch} with the internal reference discharge time $t_{dch(ref)}$. The current source is controlled by the voltage on C_{CPC} which causes the capacitance on pin IN to be discharged more quickly in the case that the voltage on C_{CPC} is rising, thereby compensating for the increase in capacitance on input pin IN. This arrangement constitutes a closed-loop control system that constantly attempts to equalize the discharge time t_{dch} with $t_{dch(ref)}$. This allows compensating for slow changes in capacitance on input pin IN. Fast changes due to an approaching hand for example will not be compensated. In the equilibrium state the discharge times are equal and the pulses alternate between CUP and CDN.

From this also follows that an increase in capacitor value C_{CPC} results in a smaller voltage change per pulse CUP or CDN. Thus the compensation due to internal current sink source I_{sink} is slower and therefore the sensitivity of the sensor will increase. Likewise a decrease in capacitor C_{CPC} will result in a lower sensitivity. (For further information see Section 13.)

The counter, following the sensor logic depicted in <u>Figure 3</u>, counts the pulses of CUP or CDN respectively. The counter is reset every time the pulse sequence changes from CUP to CDN or vice versa. Pin OUT will only be activated when a sufficient number of consecutive CUP or CDN pulses occur. Low level interference or slow changes in the input capacitance do not cause the output to switch.

Various measures, such as asymmetrical charge and discharge steps, are taken to ensure that the output switches off correctly. A special start-up circuit ensures that the device reaches equilibrium quickly when the supply is attached.

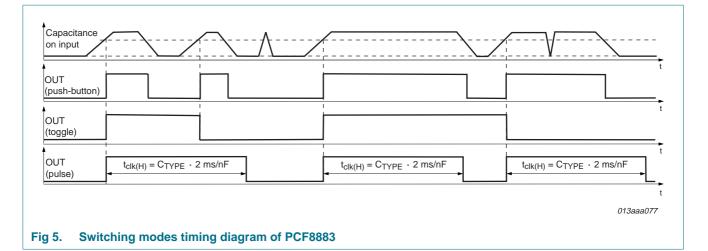
Pin OUT is an open-drain output capable of pulling an external load R_{ext} (at maximum current of 20 mA) up to V_{DD} . The load resistor must be dimensioned appropriately, taking the maximum expected V_{DD} voltage into account. The output will be automatically deactivated (short circuit protection) for loads in excess of 30 mA. Pin OUT can also drive a CMOS input without connection of the external load.

A small internal 150 nA current sink I_{sink} enables a full voltage swing to take place on OUT, even if no load resistor is connected. This is useful for driving purely capacitive CMOS inputs. The falling slope can be fairly slow in this mode, depending on load capacitance.

The sampling rate (f_s) corresponds to half of the frequency used in the RC timing circuit. The sampling rate can be adjusted within a specified range by selecting the value of C_{CLIN} . The oscillator frequency is internally modulated by 4 % using a pseudo random signal. This prevents interference caused by local AC-fields.

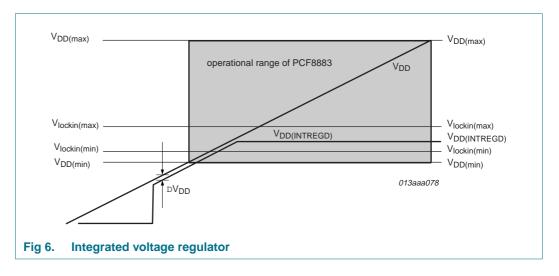
8.1 Output switching modes

The output switching behavior can be selected using pin TYPE (see Figure 5)


- Push-button (TYPE connected to V_{SS}): The output OUT is active as long as the capacitive event² lasts.
- Toggle (TYPE connected to V_{DD(INTREGD)}): The output OUT is activated by the first capacitive event and deactivated by a following capacitive event.
- Pulse (C_{TYPE} connected between TYPE and V_{SS}): The output OUT is activated for a defined time at each capacitive event. The pulse duration is determined by the value of C_{TYPE} and is approximately 2.5 ms/nF.

A typical value for C_{TYPE} is 4.7 nF which results in an output pulse duration of about 10 ms. The maximum value of C_{TYPE} is 470 nF which results in a pulse duration of about 1 s. Capacitive events are ignored that occur during the time the output is active.

<u>Figure 5</u> illustrates the switching behavior for the output switching modes. Additionally the graph illustrates, that short term disturbances on the sensor are suppressed by the circuit.


^{2.} A capacitive event is a dynamic increase of capacitance at the sensor input pin IN.

Capacitive proximity switch with auto-calibration

8.2 Voltage regulator

The PCF8883 implements a chip-internal voltage regulator supplied by pin V_{DD} that provides an internal supply (V_{DD(INTREGD)}), limited to a maximum of 4.6 V. The lock-in voltage V_{lockin} on V_{DD} is typically 4.0 V. The regulated supply is available at pin V_{DD(INTREGD)} and can be used to supply power to external electronic components (at a maximum current of 0.5 mA). Figure 4 shows the relationship between V_{DD} and V_{DD(INTREGD)}.

9. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+9	V
VI	input voltage	on pins IN, TYPE, CPC	-0.5	$V_{DD(INTREGD)} + 0.5$	V
lo	output current	on pin OUT	-10	+50	mA
I _{SS}	ground supply current		-10	+50	mA
l _l	input current	on any other pin	-10	+10	mA
P _{tot}	total power dissipation		-	100	mW
V _{ESD}	electrostatic discharge	HBM	<u>[1]</u> _	±2000	V
	voltage	MM	[2] _	±200	V
l _{lu}	latch-up current		[3] _	100	mA
T _{stg}	storage temperature		<u>[4]</u> –60	+125	°C

[1] Pass level; Human Body Model (HBM) according to Ref. 6 "JESD22-A114".

[2] Pass level; Machine Model (MM), according to Ref. 7 "JESD22-A115".

[3] Pass level; latch-up testing, according to Ref. 8 "JESD78" at maximum ambient temperature (T_{amb(max)} = 85 °C).

[4] According to the NXP store and transport requirements (see <u>Ref. 10 "NX3-00092"</u>) the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products deviant conditions are described in that document.

Capacitive proximity switch with auto-calibration

10. Static characteristics

Table 5.Static characteristics

 $V_{DD} = 5 V$, $T_{amb} = +25 \circ C$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DD}	supply voltage		[1]	3.0	-	9.0	V
V _{lockin}	lock-in voltage	no external load		-	4.0	-	V
V _{DD} (INTREGD)	internal regulated supply voltage	$V_{DD} > V_{lockin}$		3.0	4.0	4.6	V
$\Delta V_{DD}(INTREGD)$	internal regulated supply voltage variation	V _{DD} < V _{lockin}		-	10	50	mV
I _{DD}	supply current	idle state; f _s = 1 kHz	[2]	-	3	5	μΑ
		idle state; $f_s = 1 \text{ kHz}$; V _{DD} = 3.0 V	[2]	-	2.2	3.5	μA
l _{sink}	sink current	internal constant current to $V_{\rm SS}$		-	150	-	nA
Vo	output voltage	on pin OUT; pull-up voltage		0	V_{DD}	9.0	V
lo	output current	P-MOS	[3]	0	10	20	mA
		short circuit protection $V_O \ge 0.6 V$		20	30	50	mA
V _{sat}	saturation voltage	on pin OUT; I _O = +10 mA		0.1	0.2	0.4	V
		on pin OUT; I _O = +10 mA; V _{DD} = 3.0 V		0.1	0.3	0.5	V
C _{dec}	decoupling capacitance	on pin $V_{DD(INTREGD)}$	[4]	100	-	220	nF
VI	input voltage	on pin CPC		0.6	-	$V_{DD(INTREGD)} - 0.3$	V
ILI	input leakage current	on pin CPC		-1	-	+1	nA
T _{amb}	ambient temperature			-40	-	+85	°C

[1] When the input capacitance range is limited to 10 pF $\leq C_i \leq$ 40 pF or an external pull-down resistor R_C is used, the device can be operated down to V_{DD} = 3.0 V over the full temperature range.

[2] Idle state is the steady state after completed power-on without any activity on the sensor plate and the voltage on the reservoir capacitor C_{CPC} settled.

[3] For reliability reasons the average output current must be limited to 4.6 mA at 70 °C and 3.0 mA at 85 °C.

[4] External ceramic chip capacitor recommended (see Figure 15).

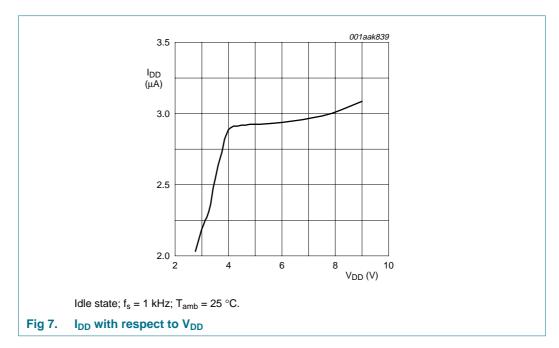
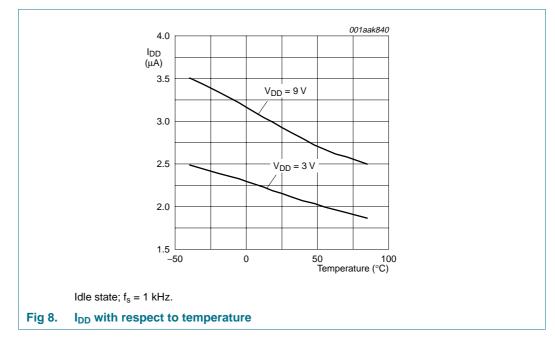
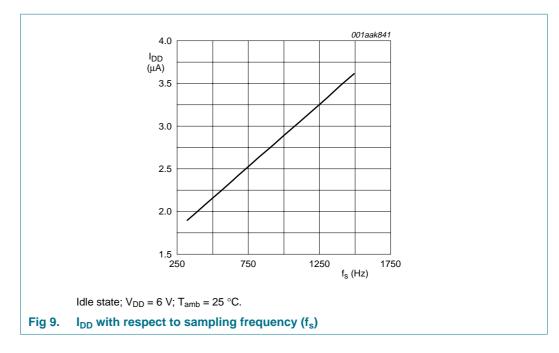

11. Dynamic characteristics

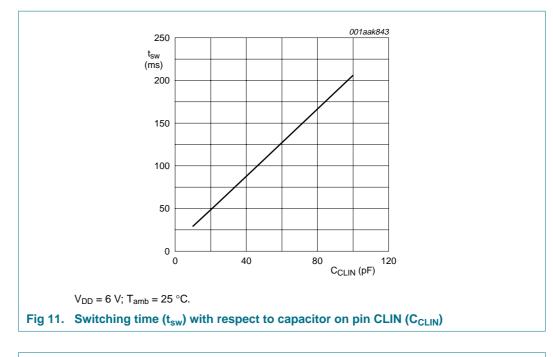
Table 6. Dynamic characteristics

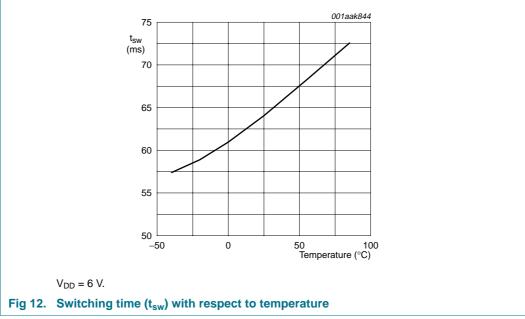

 $V_{DD} = 5 V$, $C_{CLIN} = 22 pF$, $C_{CPC} = 470 nF$, $T_{amb} = +25 \circ C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
C _{CLIN}	capacitance on pin CLIN		0	22	100	pF
C _{CPC}	capacitance on pin CPC	X7R ceramic chip capacitor	90	470	2500	nF
N _{res(dig)eq}	equivalent digital resolution		-	14	-	bit
C _{TYPE}	capacitance on pin TYPE		0.1	-	470	nF
Ci	input capacitance	sensing plate and connecting cable	10	-	60	pF
		sensing plate and connecting cable; $T_{amb} = -40 \text{ °C to } +85 \text{ °C};$ $V_{DD} = 3.0 \text{ V}$	10	-	40	pF
R _{DSon}	drain-source on-state resistance	internal pull-up on input	-	-	500	Ω
t _{ch}	charge time	per sample	1.4	2.5	3.5	μs
t _{dch}	discharge time	per sample	-	1.0	-	μs
t _{startup}	start-up time	until normal operation is established	-	0.5	-	s
tp	pulse duration	on pin OUT; in pulse mode; $C_{TYPE} \ge 10 \text{ nF}$	-	2.5	-	ms/nF
f _s	sampling frequency	$C_{CLIN} = 0 \text{ pF}$	-	3.3	-	kHz
		C _{CLIN} = 22 pF (typical value)	-	1	-	kHz
		C _{CLIN} = 100 pF	-	275	-	Hz
t _{sw}	switching time	at f _s = 1 kHz	-	64	-	ms

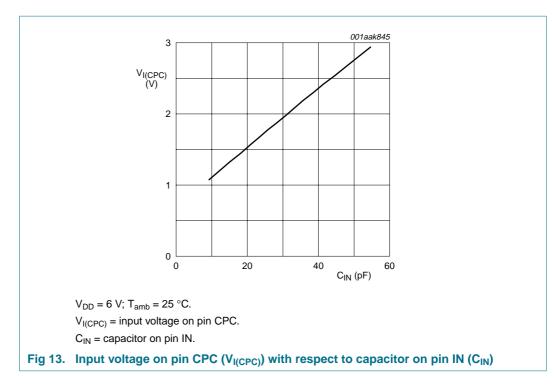

12. Characteristic curves


12.1 Power consumption

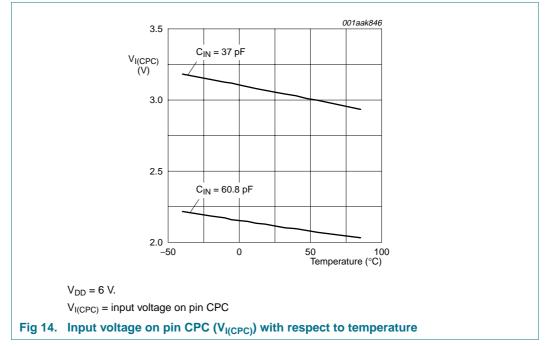

Capacitive proximity switch with auto-calibration



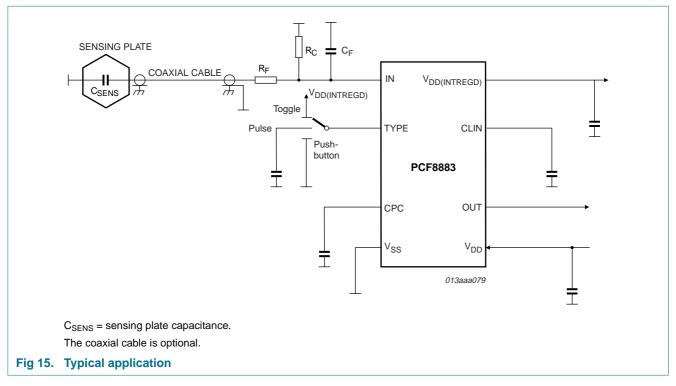
12.2 Typical reaction time



Capacitive proximity switch with auto-calibration



Capacitive proximity switch with auto-calibration



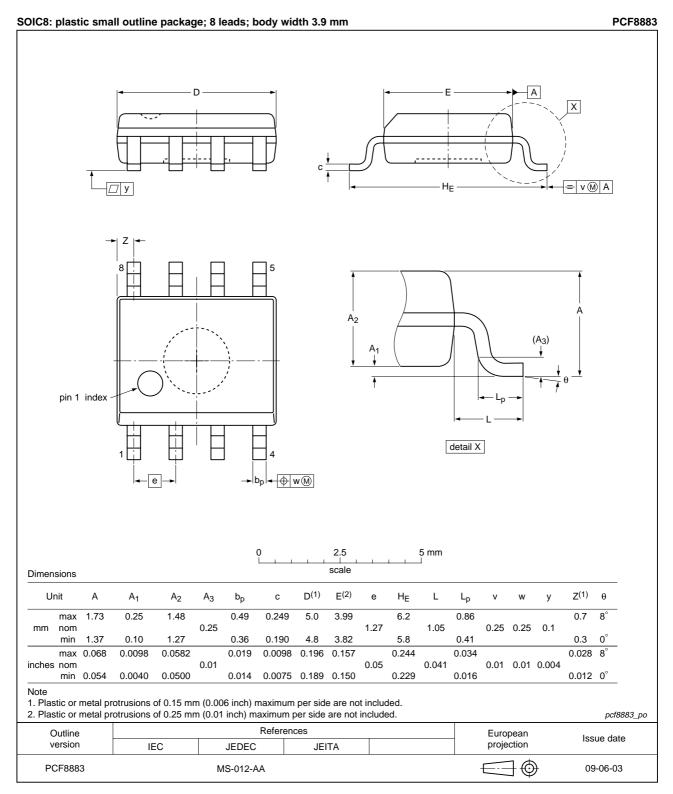
12.3 Reservoir capacitor voltage

13. Application information

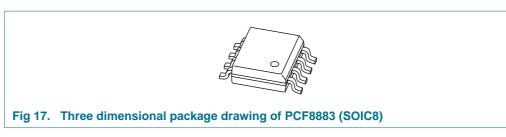
Figure 15 shows the typical connections for a general application³. The positive supply is connected to pin V_{DD} . It is recommended to connect smoothing capacitors to ground to both V_{DD} and $V_{DD(INTREGD)}$ (values for C_{dec} , see Table 5).

The sampling rate is determined by the capacitance C_{CLIN} on pin CLIN. A higher sampling rate reduces the reaction time and increases the current consumption.

The sensing plate capacitance C_{SENS} may consist of a small metal area, for example behind an isolating layer. The sensing plate can be connected to a coaxial cable (C_{CABLE}) which in turn is connected to the input pin IN. Alternatively, the sensing plate can be directly connected to the input pin IN. An internal low pass filter is used to reduce RF interference. An additional low pass filter consisting of a resistor R_F and capacitor C_F can be added to the input to further improve RF immunity as required. For good performance, the total amount of capacitance on the input ($C_{SENS} + C_{CABLE} + C_F$) should be in the proper range, the optimum point being around 30 pF. These conditions allow the control loop to adapt to the static capacitance on C_{SENS} and to compensate for slow changes in the sensing plate capacitance. A higher capacitive input loading is possible provided that an additional discharge resistor R_C is placed as shown in Figure 15. Resistor R_C simply reduces the discharge time such that the internal timing requirements are fulfilled.


^{3.} For further information see <u>Ref. 2 "AN10832"</u>. Information about the appropriate evaluation board can be found in <u>Ref. 11</u> <u>"UM10370"</u>.

The sensitivity of the sensor can be influenced by the sensing plate area and capacitor C_{CPC} . The sensitivity is significantly reduced when C_{CPC} is reduced. When maximum sensitivity is desired C_{CPC} can be increased, but this also increases sensitivity to interference. Pin CPC has high-impedance and is sensitive to leakage currents. Therefore C_{CPC} should be a high quality foil or ceramic capacitor, for example an X7R type.


For the choice of proper component values for a given application, the component specifications in Table 5 and Table 6 must be followed.

Capacitive proximity switch with auto-calibration

14. Package outline

Fig 16. Package outline of PCF8883 (SOIC8)

15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

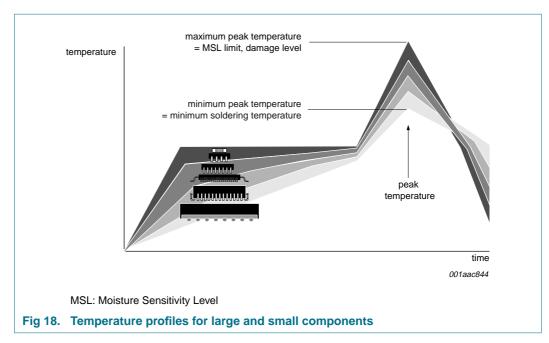
15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 18</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 7 and 8

Table 7. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 8.Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 18.

Capacitive proximity switch with auto-calibration

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

16. Abbreviations

Table 9.	Abbreviations
Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
HBM	Human Body Model
IC	Integrated Circuit
MM	Machine Model
MOS	Metal Oxide Semiconductor
MOSFET	Metal–Oxide–Semiconductor Field-Effect Transistor
MSL	Moisture Sensitivity Level
PCB	Printed-Circuit Board
RC	Resistance-Capacitance
RF	Radio Frequency
SMD	Surface Mount Device

17. References

- [1] AN10365 Surface mount reflow soldering description
- [2] AN10832 PCF8883 capacitive proximity switch with auto-calibration
- [3] IEC 60134 Rating systems for electronic tubes and valves and analogous semiconductor devices
- [4] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [5] IPC/JEDEC J-STD-020D Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
- [6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
- [7] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)
- [8] JESD78 IC Latch-Up Test
- [9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [10] NX3-00092 NXP store and transport requirements
- [11] UM10370 PCF8883 evaluation board

18. Revision history

Table 10. Revision hist	Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
PCF8883_1	20091016	Product data sheet	-	-		

19. Legal information

19.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

19.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Capacitive proximity switch with auto-calibration

21. Contents

1	General description 1
2	Features 1
3	Applications 2
4	Ordering information 2
5	Marking 2
6	Block diagram 3
7	Pinning information 4
7.1	Pinning 4
7.2	Pin description 4
8	Functional description 5
8.1	Output switching modes 7
8.2	Voltage regulator 8
9	Limiting values
10	Static characteristics 10
11	Dynamic characteristics 11
12	Characteristic curves 12
12.1	Power consumption 12
12.2	Typical reaction time
12.3	Reservoir capacitor voltage 15
13	Application information
14	Package outline 18
15	Soldering of SMD packages 19
15.1	Introduction to soldering 19
15.2	Wave and reflow soldering 19
15.3	Wave soldering 20
15.4	Reflow soldering 20
16	Abbreviations 21
17	References 22
18	Revision history 22
19	Legal information 23
19.1	Data sheet status 23
19.2	Definitions
19.3	Disclaimers
19.4	Trademarks
20	Contact information 23
21	Contents 24

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

founded by

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 October 2009 Document identifier: PCF8883_1